Zoonoz Bruselloz’un Önlenmesinde Crispr Teknolojisinin Kullanımı
DOI:
https://doi.org/10.5281/zenodo.14454911Anahtar Kelimeler:
Brucella, CRISPR, zoonozÖzet
Patojenler, çiftlik hayvanlarında çok çeşitli bulaşıcı hastalıklara neden olur. Hayvan bakımında en iyi uygulamaları ve hayvancılığı etkileyen bulaşıcı hastalıkları durdurmanın ve önlemenin etkili bir yolunu oluşturmak esastır. Hayvancılığın endüstrileşmesi, şüphesiz gıda hayvanı üretiminin verimliliğini artırarak insan refahının iyileştirilmesine katkıda bulunmuştur. Aynı zamanda, doğal çevreyi ve insan toplumunu da büyük ölçüde etkilemiştir. Bu makalede hayvancılığın bakteri kökenli zoonotik enfeksiyonu olan brusellayı ve konak-mikrop etkileşimlerine Crispr teknolojisi ile odaklanıyoruz. Bu derinlemesine birbirine bağlı sorunların altında yatan temel soru, hayvancılıkta enfeksiyonların nasıl daha iyi önleneceği, izleneceği ve yönetileceğidir.
Referanslar
Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food‐borne zoonotic bacterial pathogens. Journal of tropical medicine, 2020(1), 4674235.
Bakhrebah, M. A., Nassar, M. S., Alsuabeyl, M. S., Zaher, W. A., & Meo, S. A. (2018). CRISPR technology: new paradigm to target the infectious disease pathogens. European Review for Medical & Pharmacological Sciences, 22(11):3448–3452.
Bardenstein, S., Gibbs, R. E., Yagel, Y., Motro, Y., & Moran-Gilad, J. (2021). Brucellosis outbreak traced to commercially sold camel milk through whole-genome sequencing, Israel. Emerging Infectious Diseases, 27(6), 1728–1731.
Bhattacharjee, R., Nandi, A., Mitra, P., Saha, K., Patel, P., Jha, E., ... & Suar, M. (2022). Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Materials Today Bio, 15, 100291.
Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436-439.
Dang, S., Sui, H., Zhang, S., Wu, D., Chen, Z., Zhai, J., & Bai, M. (2023). CRISPR-Cas12a test strip (CRISPR/CAST) package: In-situ detection of Brucella from infected livestock. BMC Veterinary Research, 19(1), 202.
Dawood, A. S., Elrashedy, A., Nayel, M., Salama, A., Guo, A., Zhao, G., ... & Luo, W. (2023). Brucellae as resilient intracellular pathogens: Epidemiology, host–pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Frontiers in Veterinary Science, 10, 1255239.
de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A., & Adams, L. G. (2015). Pathogenesis and immunobiology of brucellosis: review of Brucella–Host Interactions. The American journal of pathology, 185(6), 1505-1517.
Díaz, R., Casanova, A., Ariza, J., & Moriyon, I. (2011). The Rose Bengal Test in human brucellosis: a neglected test for the diagnosis of a neglected disease. PLOS Neglected tropical diseases, 5(4), e950.
EFSA ECDC. 2021. The European Union One Health 2019 Zoonoses Report. EFSA J. 19(2):e06406.
Elsohaby, I., & Villa, L. (2023). Zoonotic diseases: understanding the risks and mitigating the threats. BMC Veterinary Research, 19(1), 186.
Fouskis, I., Sandalakis, V., Christidou, A., Tsatsaris, A., Tzanakis, N., Tselentis, Y., & Psaroulaki, A. (2018). The epidemiology of Brucellosis in Greece, 2007–2012: a ‘One Health’approach. Transactions of The Royal Society of Tropical Medicine and Hygiene, 112(3), 124-135.
Genovese, P., Schiroli, G., Escobar, G., Di Tomaso, T., Firrito, C., Calabria, A., ... & Naldini, L. (2014). Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 510(7504), 235-240.
Georgi, E., Walter, M. C., Pfalzgraf, M. T., Northoff, B. H., Holdt, L. M., Scholz, H. C., ... & Antwerpen, M. H. (2017). Whole genome sequencing of Brucella melitensis isolated from 57 patients in Germany reveals high diversity in strains from Middle East. PLoS one, 12(4), e0175425.
Ghai, R. R., Wallace, R. M., Kile, J. C., Shoemaker, T. R., Vieira, A. R., Negron, M. E., ... & Barton Behravesh, C. (2022). A generalizable one health framework for the control of zoonotic diseases. Scientific reports, 12(1), 8588.
Godfroid, J., Nielsen, K., & Saegerman, C. (2010). Diagnosis of brucellosis in livestock and wildlife. Croatian medical journal, 51(4), 296-305.
Godfroid, J., (2018). Brucella spp. at the Wildlife-Livestock Interface: An Evolutionary Trajectory through a Livestock-to-Wildlife "Host Jump"?. Veterinary Science Journal, 5(3):81.
Hu, S., Qiao, J., Fu, Q., Chen, C., Ni, W., Wujiafu, S., Ma, S., Zhang, H., Sheng, J., Wang, P., et al. (2015). Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. Elife. 4:e06951.
Hu, W., Kaminski, R., Yang, F., Zhang, Y., Cosentino, L., Li, F., et al. (2014). RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Sciences. 111(31):11461–11466.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337(6096):816–821.
Kaden, R., Ferrari, S., Alm, E., Wahab, T., (2017). A novel real-time PCR assay for specific detection of Brucella melitensis. BMC Infectious Diseases. 17(1):230.
Kantor, A., McClements, M.E., MacLaren, R.E., (2020). CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences. 21:6240.
Karponi, G., Kritas, S., Petridou, E., Papanikolaou, E., (2018). Efficient transduction and expansion of ovine macrophages for gene therapy implementations. Veterinary Science Journal. 5(2):57.
Karponi, G., Kritas, S.K., Papadopoulou, G., Akrioti, E.K., Papanikolaou, E., Petridou, E., (2019). Development of a CRISPR/Cas9 system against ruminant animal brucellosis. BMC Veterinary Research. 27;15(1):422.
Katsiolis, A., Papanikolaou, E., Stournara, A., Giakkoupi, P., Papadogiannakis, E., Zdragas, A., et al. (2022). Molecular detection of Brucella spp. in ruminant herds in Greece. Tropical Animal Health and Production. 54(3):173.
Kilpatrick, A.M., Randolph, S.E., (2012). Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. The Lancet. 380(9857):1946–55.
King, A., (2017). Technology: the future of agriculture. Nature. 544:S21–S23.
Launay, A., Wu, C.J., Chiang, A., Youn, J.H., Khil, P.P., Dekker, J.P., (2021). In vivo evolution of a zoonotic bacterial pathogen emerging in an immunocompromised human host. Nature Communications. 12:4495.
Lazcka, O., Del Campo, F.J., Muñoz, F.X., (2007). Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 22(7):1205–1217.
Li, F., Du, L., Zhen, H., et al. (2023). Follow-up outcomes of asymptomatic brucellosis: a systematic review and meta-analysis. Emerging Microbes Infections. 12.
Lin, S.R., Yang, H.C., Kuo, Y.T., Liu, C.J., Yang, T.Y., Sung, K.C., et al. (2014). The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Molecular Therapy Nucleic Acids. 3:e186.
Loh, E.H., Zambrana-Torrelio, C., Olival, K.J., Bogich, T.L., Johnson, C.K., Mazet, J.A., Karesh, W., Daszak, P., (2015). Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector-Borne and Zoonotic Diseases. 15(7):432–7.
Lu, S., Tong, X., Han, Y., Zhang, K., Zhang, Y., Chen, Q., Duan, J., Lei, X., Huang, M., Qiu, Y., et al. (2022). Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nature Biomedical Engineering. 6:286–297.
Messenger, A.M., Barnes, A.N., Gray, G.C., (2014). Reverse zoonotic disease transmission (zooanthroponosis): a systematic review of seldom-documented human biological threats to animals. PLoS ONE. 9(2):e89055.
Ortiz, A.M.D., Outhwaite, C.L., Dalin, C., Newbold, T., (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 4:88–101.
Qiu, Z., Egidi, E., Liu, H., Kaur, S., Singh, B.K., (2019). New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances. 37.
Rahman, M., Sobur, M., Islam, M., Ievy, S., Hossain, M., El Zowalaty, M.E., Rahman, A., Ashour, H.M., (2020). Zoonotic diseases: etiology, impact, and control. Microorganisms. 8(9):1405.
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L.H., (2018). Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology. 69:789–815.
Richt, J.A., Kasinathan, P., Hamir, A.N., Castilla, J., Sathiyaseelan, T., Vargas, F., Sathiyaseelan, J., Wu, H., Matsushita, H., Koster, J., et al. (2007). Production of cattle lacking prion protein. Nature Biotechnology. 25:132–138.
Rischer, H., Szilvay, G.R., Oksman-Caldentey, K.M., (2020). Cellular agriculture — industrial biotechnology for food and materials. Current Opinion in Biotechnology. 61:128–134.
Sacchini, L., Wahab, T., Di Giannatale, E., Zilli, K., Abass, A., Garofolo, G., et al. (2019). Whole genome sequencing for tracing Geographical Origin of Imported cases of human brucellosis in Sweden. Microorganisms. 7(10).
Schaeffer, J., Revilla-Fernandez, S., Hofer, E., Posch, R., Stoeger, A., Leth, C., et al. (2021). Tracking the origin of austrian human brucellosis cases using whole genome sequencing. Frontiers in Medicine (Lausanne) 8:635547.
Shanthalingam, S., Srikumaran, S., (2009). Intact signal peptide of CD18, the beta-subunit of beta2-integrins, renders ruminants susceptible to Mannheimia haemolytica leukotoxin. National Academy of Sciences - PNAS. 106:15448–15453.
Tilman, D., Balzer, C., Hill, J., Befort, B.L., (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences. 108:20260–20264.
Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences. 112:5649–5654.
Wang, Z., Cui, W.G., (2020). CRISPR Cas system for biomedical diagnostic platforms. View. 1(3):1–22.
Yang, S., Rothman, R.E., (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infection Diseases. 4(6):337–348.
Yaşar, Ü., (2023). Clinical and Laboratory Observation of Brucellosis: Ardahan. MAS Journal of Applied Sciences, 8(4), 807–812. https://doi.org/10.5281/zenodo.8406548
Zeballos, C.M., Gaj, T., (2021). Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends Biotechnology. 39:692–705.
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. ;163(3):759–771.
Zhang, T., Nickerson, R., Zhang, W., Peng, X., Shang, Y., Zhou, Y., Luo, Q., Wen, G., Cheng, Z., (2024). The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health. 8;18:100748.
Zhang, Y., Lyu, Y., Wang, D., Feng, M., Shen, S., Zhu, L., Pan, C., Zai, X., Wang, S., Guo, Y., Yu, S., Gong, X., Chen, Q., Wang, H., Wang, Y., Liu, X., (2024). Rapid Identification of Brucella Genus and Species In Silico and On-Site Using Novel Probes with CRISPR/Cas12a. Microorganisms. 17;12(5):1018.
Zhu, H., Li, C., Gao, C., (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology. 21:661–677.

İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2024 Esra Bilici

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.