Optogenetics and Light Control of Muscles

Authors

DOI:

https://doi.org/10.5281/zenodo.12510731

Keywords:

Control, Light sensitive proteins, Living cells, Muscle, Optogenetics

Abstract

Optogenetics is a technique that uses genetic and optical tools to control the activities of living cells, particularly neurons, with light. This method allows for precise modulation of the electrical activities of specific cell groups. Optogenetics can be used not only to control nerve cells but also to control muscle cells. This process involves genetically modifying muscle cells to express light-sensitive proteins (e.g., channelrhodopsin-2 or halorhodopsin). Genes encoding light-sensitive proteins are introduced into muscle cells. This is typically done using viral vectors.

References

Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., & De Lecea, L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450(7168), 420-424.

Ben-Ari, Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nature Reviews Neuroscience, 3(9), 728-739.

Deisseroth, K., Feng, G., Majewska, A. K., Miesenböck, G., Ting, A., & Schnitzer, M. J. (2006). Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience, 26(41), 10380-10386.

Govorunova, E. G., Gou, Y., Sineshchekov, O. A., Li, H., Lu, X., Wang, Y., ... & Spudich, J. L. (2022). Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nature neuroscience, 25(7), 967-974.

Han, X., Qian, X., Bernstein, J. G., Zhou, H. H., Franzesi, G. T., Stern, P., ... & Boyden, E. S. (2009). Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron, 62(2), 191-198.

Häusser, M. (2014). Optogenetics: the age of light. Nature methods, 11(10), 1012-1014.

Herlitze, S., & Landmesser, L. T. (2007). New optical tools for controlling neuronal activity. Current opinion in neurobiology, 17(1), 87-94.

Kishi, K. E., Kim, Y. S., Fukuda, M., Inoue, M., Kusakizako, T., Wang, P. Y., ... & Kato, H. E. (2022). Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell, 185(4), 672-689.

Kuhne, J., Vierock, J., Tennigkeit, S. A., Dreier, M. A., Wietek, J., Petersen, D., ... & Gerwert, K. (2019). Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proceedings of the National Academy of Sciences, 116(19), 9380-9389.

Mahn, M., Gibor, L., Patil, P., Cohen-Kashi Malina, K., Oring, S., Printz, Y., ... & Yizhar, O. (2018). High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nature communications, 9(1), 4125.

Oesterhelt, D., & Stoeckenius, W. (1971). Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature new biology, 233(39), 149-152.

Ronzitti, E., Ventalon, C., Canepari, M., Forget, B. C., Papagiakoumou, E., & Emiliani, V. (2017). Recent advances in patterned photostimulation for optogenetics. Journal of Optics, 19(11), 113001.

Schneider, F., Grimm, C., & Hegemann, P. (2015). Biophysics of channelrhodopsin. Annual review of biophysics, 44, 167-186.

Sineshchekov, O. A., Govorunova, E. G., Li, H., & Spudich, J. L. (2017). Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance. Proceedings of the National Academy of Sciences, 114(45), E9512-E9519.

Sugıyama, Y., & Mukohata, Y. (1984). Isolation and characterization of halorhodopsm from Halobacterium halobium. The Journal of Biochemistry, 96(2), 413-420.

Published

2024-06-27

How to Cite

ULUÇAM, D. M. (2024). Optogenetics and Light Control of Muscles. Kafkasya Journal of Health Sciences, 1(1), 14–17. https://doi.org/10.5281/zenodo.12510731