

Leaky Gut and Leaky Calves: Umbrella Review for Evidence of Proof and Published Articles

Kerem URAL^{1,a} Hasan ERDOĞAN^{1,b} Serdar PAŞA^{1c}
Songül ERDOĞAN^{1d} Tahir ÖZALP^{1e}

Abstract

In the present article we, as presenting authors write an umbrella review for detailed determination of 'leaky gut', 'intestinal permeability', 'zonulin' and for better understanding for the readers. Tight junctions, describing foremost barrier within the paracellular route among intestinal epithelial cells. Disturbed tight junctions consequently alter intestinal hyperpermeability (namely "leaky gut") and has been linked to the proposed pathogenesis of several different disorders also among calves and cattle. The aim was to write an umbrella review providing an overview of proof of evidence for participation of leaky gut and related zonulin levels also involving tight junction breakdown. Several studies were summarized, which could have helped better basic understanding of this disruption and its relevant mechanistic consequences. Taking into account those data, veterinary surgeons could probably lead to prevention/treatment of several different disorders by using nutritional additives, which were also briefly explained at this manuscript also.

Keywords: Calf, Intestinal Permeability, Leaky Gut, Zonulin.

Sızıntılı Bağırsak Sendromu ve Sızıntılı Buzağılar: Kanıt Düzeyi ve Literatürün Şemsiye Derlemesi

Öz

Bu makalede, biz sunan yazarlar olarak, okuyucular için daha iyi bir anlayış sağlamak amacıyla "sızıntılı bağırsak", "intestinal geçirgenlik" ve "zonulin"ın ayrıntılı belirlenmesi için bir şemsiye derleme yazdık. Sıkı bağlantılar, intestinal epitel hücreleri arasındaki paraselüler yoluń başlıca bariyerini oluşturur. Sıkı bağlantı bütünlüğünün bozulması, intestinal hiperpermeabiliteye (diğer adıyla 'sızıntılı bağırsak') yol açmaktadır, bu mekanizma, buzağılar ve sıgırlar dahil olmak üzere birçok farklı hastalığın patogenezi ile ilişkilendirilmiştir. Bu çalışmanın amacı, sızıntılı bağırsak oluşumu, buna eşlik eden zonulin düzeyleri ve sıkı bağlantı bozulmasını kapsayan kanıtlara genel bir bakış sunan bir şemsiye derleme hazırlamaktır. Bu bozulma ve ilişkili mekanistik sonuçların daha iyi anlaşılmasına katkı sağlayacak çalışmalar derlenmiştir. Bu veriler dikkate alındığında, veteriner hekimlerin bu makalede ayrıca kısaca açıklanan besinsel katkı maddelerini kullanarak çeşitli hastalıkların önlenmesi ve/veya tedavisine katkı sağlayabilecekleri düşünülmektedir.

Anahtar Kelimeler: Buzağı, İntestinal Geçirgenlik, Sızıntılı Bağırsak, Zonulin.

¹Aydın Adnan Menderes University, Faculty of Veterinary, Department of Internal Medicine, Aydin, Turkiye.

^aORCID: 0000-0003-1867-7143

^bORCID: 0000-0001-5141-5108

^bORCID: 0000-0003-4957-9263

^bORCID: 0000-0002-7833-5519

^bORCID: 0000-0002-9873-0364

Sorumlu Yazar/Corresponding Author:

tozalp@adu.edu.tr

Başvuru/Submitted: 14/10/2025

1. Revizyon/1th Revised: 2/12/2025

Kabul/Accepted: 4/12/2025

Yayın/Online Published: 24/12/2025

Atif/Citation: Ural, K., Erdoğan, H., Pasa, S., Erdoğan, S., & Özalp, T. (2025). Leaky Gut and Leaky Calves: Umbrella Review for Evidence of Proof and Published Articles. Kafkasya Journal of Health Sciences, 2(2), 54-57.

Doi: [10.5281/zenodo.17998455](https://doi.org/10.5281/zenodo.17998455)

Financial Disclosure: This research received no grant from any funding agency/industry.

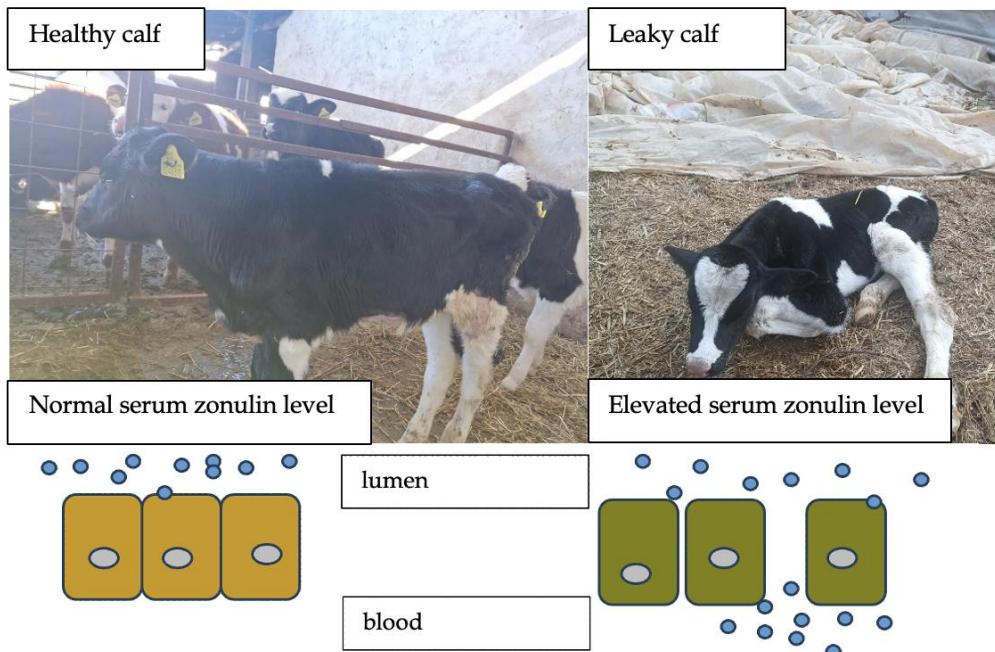
Conflict of Interest: The authors declared that there is no conflict of interest.

Authorship Contributions: Idea/Conceptualization: KU, SP, HE, SE, TO, Supervision / Advising: KU, SP, HE, SE, TO, Literature Research and Review: KU, SP, HE, SE, TO, Analysis and/or Interpretation: KU, SP, HE, SE, TO, Writing-Original Draft: KU, SP, HE, SE, TO, Critical Review: KU, SP, HE, SE, TO.

Introduction

The intestinal barrier is a multiplex network composed of mucus layer, epithelial cell and basal lamina propria. Given physical barrier of intestinal microbiota, constituted by tight junctions multi-protein intricate. Disrupted tight junctions elevated epithelial permeability, consequently leading to leaky gut (Cereijido and Anderson, 2001; Takeuchi et al., 2004; Liu et al., 2005; Quigley, 2016; Nagpal and Yadav, 2017; Camilleri, 2019; Moonwiriyakit et al., 2023). Fig. 1 showed brief and shortened mechanistic value of this study along with self-archive 2 calves (one diseased and other healthy one). Considering gastrointestinal barrier, which has been described as a pivotal defender for maintenance of epithelial cell integrity, and thus prevention against infections along with diminished inflammation (van Zyl et al., 2020). Deficient nutrition might suppress immune functioning and elevated the probability of infection and disease (Nonnecke et al., 2003). It is also denoted that nutrition has a pivotal role for regulating intestinal development, as well as health status of the calf, growth, and production traits (Fischer et al., 2019). Apart from nutrition multiple drug usage is another problematic era. In a recently fresh field study, 59 calves residing at different farms subjected to polypharmacy had been classified as diarrhea (Group I; n=20) and/or pneumonia (Group II; n=20) and 19 other healthy calves were involved as the control group (III).

Serum diamine oxidase values were detected as 8.22 ± 2.02 , 11.44 ± 1.96 and 28.90 ± 3.59 ($p < 0.001$) in Groups I, II and III, respectively. It was suggested that intestinal mucosal injury might exist in both disease activity linked to polypharmacy for at least 1 week (Aliç Ural, 2025a).


Materials and Methods

Several indexes were searched with relevant keywords, which involved 'leaky gut', 'intestinal permeability', 'intestinal epithelial cells', 'zonulin', 'intestinal integrity' etc. To those of both national and international case reports, studies or reviews were analyzed. Inclusion criteria evolved 'calves or cattle' as common denominators. To those of fulfilling criteria, solely relevant literature was composed.

Results and Discussion

Leaky gut denominator studies

In an interesting article, giardiasis, one of the foremost and wisely denoted parasitic disease, and its relationship with leaky gut was determined. In a total of eleven calves in each group [healthy control vs. diarrheic calves with mono giardia infection] were enrolled. Commercially available and obtained ELISA tests exhibited elevated mean serum zonulin levels (63.35 ± 3.73 ng/mL vs. 34.94 ± 3.72 ng/mL among diarrheic calves with giardiasis and healthy calves respectively). Available data obtained from that research revealed occurrence of leaky gut and altered intestinal permeability among diarrheic calves with giardiasis (Aliç Ural, 2022a).

Fig. 1. Authors self-photograph archive at Intestinal Permeability Measurement Center (İPÖM) depicting one healthy calf and another one on the right side as a leaky calf with leaky gut. Elevated serum zonulin level indicated altered intestinal permeability and leaky gut.

In prior research multiple repeated either low or high dose intramuscular indomethacin administration (every 12 h for 48 h) was inducted for mimicking leaky gut in 18 male, 2-4 days old Holstein calves. The investigators aimed at detecting fatal effects of leaky gut on intestinal tissue functioning and inflammatory respond. In that study biomarkers of intestinal permeability (prior to and thereafter lactulose, d-mannitol, and chromium-EDTA consumption), several cytokines were analyzed. At the end of the trial calves were sacrificed. The variance for biomarker levels among pre and post challenges was elevated in indomethacin administered calves (for lactulose and chromium-EDTA). Moreover, chemokine ligand 2/4 and IL-6 were elevated among high dose indomethacin group of calves. Furthermore, both high and low doses of indomethacin caused deduced villus length and surface area through distal jejunum and ileum. There were also diminished crypt depth and width throughout colon. In that interesting trial it was shown that repeated indomethacin injections through 48-h caused leaky-gut-like clinical signs, negatively influencing distal portion of the bowel (Cangiano et al., 2022). This trial of leaky gut model, established at that trial could reflect the importance of intestinal health and avoidance of indomethacin and relevant drugs (Cangiano et al., 2022).

A significant study was performed with the hypothesis of probable intestinal barrier integrity disruption associated with heat stress causing leaky gut in cattle. In that research in an attempt to exhibit intestinal barrier disruption via heat stress, serum zonulin levels were analyzed. The study protocol involved a local farm in Aydin, Türkiye through August (36-44°C, %36 humidity). Serum zonulin (ng/ml) concentrations were elevated (60.07 ± 21.20) at mid night in comparison to mid-day (34.60 ± 10.90) ($p=0.018$). Elevated zonulin concentration were deemed linked to altered intestinal barrier/intestinal permeability due to heat stress (Aliç Ural et al., 2021a).

Zonulin search in advance literature with special reference to ruminants

Zonulin investigation has been targeted in several previous article (Aliç Ural et al., 2021a; Aliç Ural et al., 2021b; Aliç Ural, 2022a; Aliç Ural, 2022b; Aliç Ural et al., 2022; Aliç Ural, 2022c; Aliç Ural, 2023; Aliç Ural and Ural, 2023; Aliç Ural, 2025a) on ruminants, those of which were performed in Türkiye.

In a field investigation describing 'gut-lung axis' in calves with respiratory distress syndrome it was hypothesized that this axis has relationship with leaky gut and intestinal permeability. For this purpose, relevant field study determining gut-lung axis in 78 calves [n=59 with respiratory distress syndrome and n=19 healthy] belonging to 5 different milk-fed veal commercial farms were enrolled. The mean zonulin levels (ng/mL) in calves exhibiting respiratory distress

were detected as 66.71 ± 4.602 with significant elevation in comparison to healthy calves 21.69 ± 4.234 ($p<0.05$) (Erdogan et al., 2024)

It was hypothesized that elevated intestinal permeability among rotavirus-linked diarrhea has to be elucidated. In that article 25 calves (n=10 with diarrhea and mono-infected with rotavirus, 8 calves co-infected with rotavirus and other agents and 7 other healthy) mean±standart error serum zonulin levels (ng/mL) were increased in both mono- and co-infected calves in comparison to healthy calves, suggesting elevated intestinal permeability indicating diagnosis of leaky gut (Aliç Ural, 2025d).

Intestinal health repair via nutraceuticals

Phytotherapeutic and of relevant nutraceuticals have arousing interest for the last years also involving calves health and welfare. For his part, the authors would focus on intestinal health and related investigations, specifically targeted at natural products at treat to target focus.

Turmeric, as extracted from *Curcuma longa L.*, and its relevant influence on leaky gut (serum zonulin concentrations), fecal consistency and latent cleansing scores among diarrheic calves, were investigated in Türkiye. Four different commercial farms were evolved and n=19 calves from each farm with diarrhea were selected and enrolled. Sandwich ELISA was preferred in an attempt to calculate zonulin levels. In that research diarrhea was described with a stool score $\geq 2-3$. Curcumin treatment resulted with significantly ($p < 0.001$) altered stool scores and diminished zonulin levels ($p < 0.001$), indicating its influence on diminishing leaky gut (Aliç Ural, 2025b).

A prior field study regarding diarrheic (n=11) and non-diarrheic (n=7), healthy calves aimed at analyzing the efficacy of citrus seed extract, on hide cleanliness and stool consistency scores. Following interpretation of stool consistency and hide cleanliness, scored at 0 to 3, citrus seed extract was given in rectal enema for seven days. Both stool consistency and hide cleanliness scores were diminished and detected at 0 to 1, suggesting intestinal health support among calves with diarrhea (Aliç Ural et al., 2022). Another recent study supported the efficacy of urolithin-a on calves intestinal health. In that investigation urolithin-a caused diminished diarrheic days and latent cleanliness scores, linked to anti-inflammatory and immunomodulatory effects (Aliç Ural, 2025c).

Conclusion

The intestinal barrier is essential for maintaining gut integrity, preventing infections, and supporting overall health in calves. Disruption of this barrier leads to leaky gut, which can result from stress, infection, or drug exposure. Early detection and intervention are key to minimizing intestinal damage. Nutritional and

phytotherapeutic approaches, such as curcumin, citrus seed extract, and urolithin-A, have shown promising effects in restoring gut integrity, improving fecal consistency, and supporting overall calf health. Maintaining a healthy intestinal barrier is therefore critical for animal welfare, growth, and productivity.

References

Aliç Ural, D., Erdoğan, S., Erdoğan, H., & Ural, K. (2021a). Heat stress, intestinal barrier disruption and calves: multidisciplinary perspective field study. *J Adv VetBio Sci Tech*, 6(3): 265-269. DOI: 10.31797/vetbio.1004746

Aliç Ural, D., Erdoğan, S., Erdoğan, H., & Ural, K. (2021b). Alterations in gut integrity due to heat stress among dairy cattle of Aydin city: analytical interpretation of zonulin levels within repetitive measurements. *Int J Vet Anim Res*, 4(3): 111-114

Aliç Ural, D., Erdoğan, S., Erdoğan, H., Zararyok, G., Doğan, B., & Ural, K. (2022). Turunç ekstraktı uygulamasının saha koşullarında ishali ve ishali olmayan buzağılarda dışkı kıvamı ile gizli temizlik üzerine etkinliğinin araştırılması. *J Adv VetBio Sci Tech*, 7(3): 283-288. DOI: 10.31797/vetbio.1014827

Aliç Ural, D., & Ural, K. (2023). Zonulin as a preliminary biomarker of lung permeability among diseased calves: cohort study. *Egypt J Vet Sci*, 54(4): 601-607. DOI: 10.21608/ejvs.2023.196708.1450

Aliç Ural, D. (2022a). Leaky gut and Giardia duodenalis infection associated serum zonulin levels among calves: randomized clinical study. *Turk Klin J Vet Sci*, 13(2): -. DOI: 10.5336/vetsci.2022.92569

Aliç Ural, D. (2022b). Zonulin as a noninvasive selected biomarker of gut barrier function identify and debug calves suffering from diarrhea. *Int J Vet Anim Res*, 5(3): 159-161

Aliç Ural, D. (2022c). Heat stress and seasonal dissipation of circulating zonulin levels among calves in Aydin Region. *Int J Vet Anim Res*, 5(2): 47-49

Aliç Ural, D. (2023). Serum zonulin levels and fecal scoring as probable early predictor of intestinal inflammation among calves with diarrhea: cohort study. *Turk Klin J Vet Sci*, 14(1): 18-21. DOI: 10.5336/vetsci.2023.96104

Aliç Ural, D. (2025a). Polifarmaziye maruz kalan buzağılarda intestinal mukozal hasarlanma mevcut mu?. *Bozok Vet Sci*, 6(1): 22-25. DOI: 10.58833/bozokvetsci.1646856

Aliç Ural, D. (2025b). Kurkuminin oral yolla yem katkısı olarak kullanımının ishali buzağılarda zonulin seviyeleri ile dışkı kıvamı ve hijyen skoru üzerine etkinliğinin araştırılması: kohort çalışması. *Turkiye Klinikleri J Vet Sci*, 16(1): 1-7. DOI: 10.5336/vetsci.2024-101599

Aliç Ural, D. (2025c). Ürolitin-A buzağılarda gizli temizlik skorlarında ve diyareik günlerin sayısında değişim sağlanabilir mi?. *Dicle Univ Vet Fak Derg*, 18(1): 59-62. DOI: 10.47027/duvetfd.1662276

Aliç Ural, D. (2025d). Rotavirus ile mono- ya da ko-enfekte buzağılarda bağırsak geçirgenliğinin bir adım öncesinde serum zonulin seviyeleri ile dışkı skorlarının yansımaları. *Bozok Vet Sci*, 6(1): 16-21. DOI: 10.58833/bozokvetsci.1642162

Camilleri, M. (2019). Leaky gut: mechanisms, measurement and clinical implications in humans. *Gut*, 68: 1516-1526. DOI: 10.1136/gutjnl-2019-318427

Cangiano, L. R., Villot, C., Renaud, J., Ipharraguerre, I. R., McNeil, B., DeVries, T. J., & Steele, M. A. (2022). Induction of leaky gut by repeated intramuscular injections of indomethacin to preweaning Holstein calves. *J Dairy Sci*, 105(8): 7125-7139. DOI: 10.3168/jds.2021-21768

Cereijido, M., & Anderson, J. (2001). Tight junctions. CRC Press.

Erdoğan, H., Erdoğan, S., Paşa, S., Coşkun, U., & Ural, K. 2024. Zonulin levels in calves with respiratory distress syndrome: Is there field evidence of proof for gut-lung axis in calves?. *TJVIM*, 3(2): 1-5. DOI: 10.5281/zenodo.14645901

Fischer, A. J., Villot, C., van Niekerk, J. K., Yohe, T. T., Renaud, D. L., & Steele, M. A. (2019). Invited Review: Nutritional regulation of gut function in dairy calves: From colostrum to weaning. *Appl Anim Sci*, 35(5): 498-510. DOI: 10.15232/aas.2019-01887

Liu, Z., Li, N., & Neu, J. (2005). Tight junctions, leaky intestines, and pediatric diseases. *Acta Paediatr*, 94: 386-393. DOI: 10.1111/j.1651-2227.2005.tb01904.x

Moonwiriyakit, A., Pathomthongtaweechai, N., Steinhagen, P. R., Chantawichitwong, P., Satianrapapong, W., & Pongkorpsakol, P. (2023). Tight junctions: from molecules to gastrointestinal diseases. *Tissue Barriers*, 11(2): 2077620. DOI: 10.1080/21688370.2022.2077620

Nagpal, R., & Yadav, H. (2017). Bacterial translocation from the gut to the distant organs: an overview. *Ann Nutr Metab*, 71: 11-16. DOI: 10.1159/000479918

Nonnecke, B. J., Foote, M. R., Smith, J. M., Pesch, B. A., & van Amburgh, M. E. (2003). Composition and functional capacity of blood mononuclear leukocyte populations from neonatal calves on standard and intensified milk replacer diets. *J Dairy Sci*, 86: 3592-3604. DOI: 10.3168/jds.S0022-0302(03)73965-4

Quigley, E. M. (2016). Leaky gut—concept or clinical entity?. *Curr Opin Gastroenterol*, 32: 74-79. DOI: 10.1097/MOG.0000000000000243

Takeuchi, K., Maiden, L., & Bjarnason, I. (2004). Genetic aspects of intestinal permeability in inflammatory bowel disease. *Novartis Found Symp*, 263: 151-158. DOI: 10.1002/0470090480.ch11

van Zyl, W. F., Deane, S. M., & Dicks, L. M. T. (2020). Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. *Gut Microbes*, 12: 1831339. DOI: 10.1080/19490976.2020.1831339.